DRAINAGE STUDY

11

12E

36

829 S. ESCONDIDO BLVD. ESCONDIDO, CA

DRAINAGE STUDY

FOR

829 S. ESCONDIDO BLVD. ESCONDIDO, CA 92025 DWG# APN 233-371-15

Prepared For:

JABRO LAW GROUP, LLC

1761 HOTEL CIRCLE SOUTH, SUITE 20 SAN DIEGO, CA 92108

Prepared By:

4C ENGINEERING + GEOMATICS

4960 North Harbor Drive Suite 200 San Diego, California 92101 619-663-8352

Prepared Under the Responsible Charge of:

Dolvin Lorenzo Buchanan RCE 83241

DATE

4C Engineering + Geomatics

4960 N Harbor Dr Ste 200 San Diego, CA 92106 619 663 8352 www.4c.engineering

TABLE OF CONTENTS

I.	PURPOSE	1
II.	PROJECT DESCRIPTION	1
III.	METHODOLOGY	3
IV.	EXISTING DRAINAGE CONDITION	4
V.	PROPOSED DRAINAGE CONDITION	5
VI.	DISCUSSION	6
VII.	CONCLUSIONS	6

LIST OF FIGURES

FIGURE 1	VICINITY MAP	1
FIGURE 2	EXISTING AERIAL	2
FIGURE 3	PROPOSED SITE PLAN	3

LIST OF TABLES

TABLE 1	EXISTING HYDROLOGY SUMMARY	5
TABLE 2	PROPOSED HYDROLOGY SUMMARY	6

LIST OF APPENDICES

APPENDIX A	DRAINAGE MANUAL REFERENCE MATERIAL
APPENDIX B	EXISTING HYDROLOGY MAP AND CALCULATIONS
APPENDIX C	PROPOSED HYDROLOGY MAP AND CALCULATIONS
APPENDIX D	REFERENCE DRAWINGS

I. PURPOSE

The purpose of this Drainage Study is to evaluate the existing and proposed drainage conditions (i.e. anticipated runoff flows) for the development of the 829 S. Escondido Apartment complex, in the City Escondido, California, located at the address 829 S. Escondido Boulevard. This technical document has been prepared to identify any potential hydrologic impacts as a result of the proposed development.

II. PROJECT DESCRIPTION

PROJECT LOCATION

Located to the west of the Centre City Parkway, south of W. 8th Avenue, and north of W. 9th Avenue, and bordered to the north by an unnamed alley. The project fronts both S Escondido Boulevard (to the east) and W 9th Avenue (to the south).

FIGURE 1 - VICINITY MAP (NO SCALE)

BACKGROUND

The proposed project site is located near existing commercial and residential buildings. The property is comprised of four existing commercial buildings, an asphalt driveway and small asphalt surface parking lot. Access to the site is solely via W 9th Ave, there is an unnamed public alley to the north as well as buildings and a wall that front the property adjoining the alley. The site itself, drains from north to south, entirely to W 9th Ave. The site is raised up from the adjacent street and sits roughly 2-3' higher than the neighbor to the west.

FIGURE 2 – EXISTING AERIAL

PROPOSED PROJECT DESCRIPTION

The proposed development will consist of 38 apartment units, over approximately four floors. There will be tuck under parking at level one. The proposed project site will generate most of its runoff via the roof.

FIGURE 3 – PROPOSED SITE PLAN

III. METHODOLOGY

The estimate of both the existing and proposed drainage flows has been performed in conformance with the City of Escondido Design Standards (2014 Edition). In this drainage study, all basins were analyzed using the Rational Method from the City of Escondido Design Standards to calculate storm runoff for a 100-year frequency storm. Other criteria are described on the following page;

- A runoff coefficient of 0.85 was used for the existing commercial property. For the proposed runoff coefficient, a value of 0.70 was used. This "C" value is based on the runoff coefficients provided in Figure 1 of the City of Escondido Design Standards.
- + Intensity values were calculated using the City of Escondido Run-off Intensity Duration Curves from the City of Escondido Design Manual. A Copy of this chart is provided in Appendix 'A'.
- + Chart 1-104.12, "Gutter and Roadway Discharge Velocity Chart" and Manning's Equation were used to determine the flow velocity for concentrated flows in curb and gutters, drainage channels and conduits. Travel times were then determined by dividing the flow distance by the velocity of flow.
- + Final times of concentration (T_c) values for each basin were calculated by adding the initial and final travel times.
- + A 100-yr design storm interval was used in analyzing the storm drain systems.

The rational method module of the Autodesk Storm and Sanitary Analysis (SSA) was used to perform the hydrologic analysis. The analysis represents the basins represented via a Junction-Link model. Refer to Exhibits 1 and 2 included in this report that delineates the drainage basin boundaries and junctions. Printed results are included in Appendix 'A' and 'B' for reference.

Method of Analysis – The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where:

Q = The peak runoff rate in cubic feet per second at the point of analysis.

C = A runoff coefficient representing the area – averaged ratio of runoff to rainfall intensity.

I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration.

A = The drainage basin area in acres.

EXISTING DRAINAGE CONDITION

The project area is composed of one overall basin and one POC. POC "A" is located at the south west corner of the site adjacent to W 9th Ave at the R/W. The existing property does not have any storm drain infrastructure on site and all drainage is handled via surface discharge. Refer to the 'Existing Hydrology Map' contained with Appendix 'A',

Basin E.1

Runoff from this basin is composed of impervious areas from the existing commercial buildings, driveway and surface parking area. The runoff is conveyed from to roof to the concrete/paving below to the south west. The surface runoff from the parking area sheet flows south west as well. It then exits via the driveway to the flowline of the gutter located in W 9th Ave, which is described as POC "A".

There is no offsite drainage that enters the existing site.

Refer to the table below for a summary of existing flow estimates analyzed in this report.

POC	AREA (AC)	RUNOFF 'C'	Q 100-YR (CFS)				
А	0.48	0.85	1.79				

Table No. 1 – Existing Hydrology Summary

PROPOSED DRAINAGE CONDITION

The proposed improvements include the construction of one building, with tuck under parking. The existing drainage patterns will remain the same for the site, with storm drain infrastructure being provided to convey the roof runoff after it is treated via proprietary treatment BMPs.

Basin P.1

This basin is composed of the building roof/footprint, and all runoff is captured via gutters and then discharged to a single treatment BMP within a raised planter within the courtyard.

Basin P.2

This basin is composed of the courtyard area, all runoff within this area will sheet flow to a treatment BMP inlet that then conveys runoff via 12" storm drain pipe into the hydromod storage facility.

Basin P.3

This basin is composed of the area outside of the roof, and encompasses the westerly drive aisle. The runoff sheet flows south west to a ribbon gutter that straddles the westerly property line. The runoff is then routed via concentrated channel flow to a treatment BMP, after which it enters the storm drain system. From there, as in the previous basins, the runoff is conveyed to a hydromodification storage facility, then to a pump, and ultimately out into W. 9th Ave via a curb outlet.

Refer to the table below for a summary of proposed flow estimates analyzed in this report.

she wo. 2 Troposed frydrology Summary							
POC	AREA (AC)	RUNOFF 'C'	Q 100-YR (CFS)				
А	0.48	0.70	1.44				

Table No. 2 – Proposed Hydrology Summary

IV. FLOOD ZONE

There is no flood zone for this site and the FEMA FIRM Panel number is 06073C1077G.

V. DISCUSSION

Based on the supporting calculations contained herein, it is anticipated that the project will result in a decrease in peak flow for the 100-year storm frequency at the point of convergence for POC "A". This is due to a change in the composition of the site due to the change from a purely commercial site, to a multi-family-based project.

Additionally, the project is not subject to regulations set forth in CWA 401/404 as it does not discharge to any impaired waters and outlets only to existing surface streets/alleys. It does not negatively impact adjacent properties.

VII. CONCLUSIONS

This study has documented the existing and developed drainage conditions for the Rutherford project. According to the hydrology analysis and supporting calculations, it is anticipated there will be no adverse drainage impacts on the hydrologic condition of the site via mitigation of the proposed condition Q100 flows. It is anticipated that peak flows will be decreased for the 100-year storm event analyzed in this study for POC "A". Additionally, there will be no negative impacts to any adjacent properties.

APPENDIX A REFERENCE MATERIAL

D: \4C Engineering and Geomatics\4C Engineering and Geomatics - Documents\Engineering\141.00 829 S. Escondido Blvd\Engineering\Reports\Drainage\141.00 EXISTING BASINS.dwg 10/20/2022 1: 05: 37 PM

Autodesk[®] Storm and Sanitary Analysis 2016 - Version 13.3.206 (Build 0)

Project Description

File Name 141.00 EX SSA.SPF

Analysis Options

Flow Units cfs Subbasin Hydrograph Method. CITY OF ESCONDIDO RATIONAL METHOD Time of Concentration..... CITY OF ESCONDIDO RUNOFF TIME CHART (5 MINUTES MINIMUM) Return Period...... 100 years Storage Node Exfiltration.. None Starting Date OCT-06-2022 00:00:00 Ending Date OCT-06-2022 01:00:00 Report Time Step 00:00:10

Node Summary *****

Node ID	Element Type	Inv Elevat	ert Maximu ion Elev	um Ponded v. Area	External Inflow	
			ft ·	ft ft²		
РОСА	OUTFALL	650	.63 650.0	63 0.00		
*****	****	Volume	Depth			
Runoff Quanti	ty Continuity *****	acre-ft	inches			
Total Precipi Continuity Er	tation ror (%)	0.015 0.157	0.365			
******	****	Volume	Volume			
<pre>Flow Routing ************</pre>	Continuity *********	acre-ft	Mgallons			
External Infl	.OW	0.000	0.000			
External Outf	low	0.012	0.004			
Initial Store	d Volume	0.000	0.000			
Final Stored Continuity Er	Volume ror (%)	0.000 0.000	0.000			
******	*****	<****				
Runoff Coeffi *********	<pre>cient Computatior ************************************</pre>	s Report				
Subbasin E.1						
				Area	Soil	Runoff
Soil/Surface	Description			(acres)	Group	Coeff.
COMMERCIAL				0.48	D	 0.85
Composite Are	a & Weighted Rund	off Coeff.		0.48		0.85

SCS TR-55 Time of Concentration Computations Report


```
Sheet Flow Equation
-----
       Tc = (0.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))
       Where:
       Tc = Time of Concentration (hrs)
       n = Manning's Roughness
       Lf = Flow Length (ft)
       P = 2 yr, 24 hr Rainfall (inches)
       Sf = Slope (ft/ft)
Shallow Concentrated Flow Equation
-----
       V = 16.1345 * (Sf^0.5) (unpaved surface)
       V = 20.3282 * (Sf^{0.5}) (paved surface)
       V = 15.0 * (Sf^0.5) (grassed waterway surface)
       V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
       V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
       V = 7.0 * (Sf^0.5) (short grass pasture surface)
       V = 5.0 * (Sf^{0.5}) (woodland surface)
       V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
       Tc = (Lf / V) / (3600 sec/hr)
       Where:
       Tc = Time of Concentration (hrs)
       Lf = Flow Length (ft)
       V = Velocity (ft/sec)
       Sf = Slope (ft/ft)
Channel Flow Equation
V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n
       R = Aq / Wp
       Tc = (Lf / V) / (3600 sec/hr)
```

Where:

Tc = Time of Concentration (hrs)
Lf = Flow Length (ft)
R = Hydraulic Radius (ft)
Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)
n = Manning's Roughness

Subbasin E.1

Sheet Flow Computations

	Subarea A	Subarea B	Subarea C
Manning's Roughness:	0.01	0.00	0.00
Flow Length (ft):	213.00	0.00	0.00
Slope (%):	1.70	0.00	0.00
2 yr, 24 hr Rainfall (in):	2.40	2.40	2.40
Velocity (ft/sec):	1.14	0.00	0.00
Computed Flow Time (minutes):	3.12	0.00	0.00
Total TOC (minutes):	3.12		

Subbasin ID	Accumulated Precip in	Rainfall Intensity in/hr	Total Runoff in	Peak Runoff cfs	Weighted Runoff Coeff	Conc days	Time of entration hh:mm:ss
E.1	0.37	4.38	0.31	1.79	0.850	0	00:05:00

Analysis began on: Sat Oct 22 15:51:08 2022 Analysis ended on: Sat Oct 22 15:51:08 2022 Total elapsed time: < 1 sec

D: \4C Engineering and Geomatics\4C Engineering and Geomatics - Documents\Engineering\141.00 829 S. Escondido Blvd\Engineering\Reports\Drainage\141.00 PROPOSED BASINS.dwg 10/20/2022 3: 28: 38 PM

Autodesk[®] Storm and Sanitary Analysis 2016 - Version 13.3.206 (Build 0)

Project Description

File Name 141.00 PR SSA.SPF

Analysis Options *********

Flow Units cfs Subbasin Hydrograph Method. Rational Subbasin Hydrograph Method. CITY OF ESCONDIDO RATIONAL METHOD Time of Concentration..... CITY OF ESCONDIDO RUNOFF TIME CHART (5 MINUTES MINIMUM) Link Routing Method Kinematic Wave Storage Node Exfiltration.. None Starting Date OCT-06-2022 00:00:00 Ending Date OCT-06-2022 01:00:00 Report Time Step 00:00:10

Subbasin Summary *****

Subbasin Total Area ID acres P.1 0.37 P.2 0.04 P.3 0.07

Node Summary

Node ID	Element Type	Invert Elevation ft	Maximum Elev. ft	Ponded Area ft²	External Inflow
J1	JUNCTION	650.35	653.85	0.00	
J2	JUNCTION	650.35	653.85	0.00	
]3	JUNCTION	647.14	653.85	0.00	
]4	JUNCTION	642.50	648.00	0.00	
]5	JUNCTION	646.80	650.20	0.00	
J6	JUNCTION	646.66	650.44	0.00	
]7	JUNCTION	642.44	650.56	0.00	
J8	JUNCTION	642.10	651.60	0.00	
]9	JUNCTION	650.91	651.96	0.00	
POCA	OUTFALL	650.63	651.63	0.00	

Link Summary *****

Link	From Node	To Node	Element	Length	Slope	Manning's
ID			Туре	ft	%	Roughness
L6	Ј4	J7	CONDUIT	6.4	0.9390	0.0150
L7	J7	J8	CONDUIT	34.1	0.9971	0.0150
L9	J9	POCA	CONDUIT	4.1	6.8293	0.0150
Link-01	J1	33	CONDUIT	37.3	8.6059	0.0150
Link-02	J2	33	CONDUIT	20.9	15.3368	0.0150
Link-03	J3	J4	CONDUIT	64.5	0.9922	0.0150
Link-04	J5	J6	CONDUIT	13.4	1.0417	0.0150
Link-05	J6	J4	CONDUIT	16.7	24.9102	0.0150
L8	38	.19	IDEAL PUMP			

*****	*******	******	
C	C+	C	

Shape

ID		Diameter		Barrels	s Sectio	nal Hy	ydraulic	Flow
		ft	ft		А	rea ft²	Radius ft	Capacity cfs
 L6	CIRCULAR	1.00	1.00	1	 L 0	.79	0.25	2.99
L7	CIRCULAR	1.00	1.00	1	L 0	.79	0.25	3.08
L9	CIRCULAR	1.00	1.00	1	L 0	.79	0.25	8.07
Link-01	CIRCULAR	1.00	1.00	1	L 0	.79	0.25	9.06
Link-02	CIRCULAR	1.00	1.00	1	L 0	.79	0.25	12.09
Link-03	CIRCULAR	1.50	1.50	1	l 1	.77	0.38	9.07
Link-04	CIRCULAR	1.50	1.50	1	L 1	.77	0.38	9.29
Link-05	CIRCULAR	1.50	1.50	1	L 1	.77	0.38	45.44
******	*****	Volume	Depth					
Runoff Quant	ity Continuity	acre-ft	inches					
Total Precip	itation	0.015	0.365					
Continuity E	Error (%)	0.306						
******	*****	Volume	Volume					
Flow Routing	g Continuity *****	acre-ft	Mgallons					
External Inf	flow	0.000	0.000					
External Out	flow	0.010	0.003					
Initial Stor	red Volume	0.000	0.000					
Final Stored	d Volume	0.000	0.000					
Continuity E	Error (%)	0.007						
********	******	*****						
Runoff Coeff ********	Ficient Computatio	ons Report *****						
Subbasin P.1	 L							
				Area	Soil	D	off	
Soil/Surface	e Description			(acres)	Group	Coe	eff.	
MULTIFAMILY				0.37	D	(ð.70	

Composite Area & Weighted Runoff Coeff.

0.37

Subbasin P.2

Soil/Surface Description	Area	Soil	Runoff
	(acres)	Group	Coeff.
MULTIFAMILY	0.04	D	0.70
Composite Area & Weighted Runoff Coeff.	0.04		0.70

Subbasin P.3

Soil/Surface Description	Area	Soil	Runoff
	(acres)	Group	Coeff.
MULTIFAMILY Composite Area & Weighted Runoff Coeff.	0.07 0.07 0.07	D	0.70 0.70

Sheet Flow Equation

 $Tc = (0.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$

Where:

Tc = Time of Concentration (hrs)
n = Manning's Roughness
Lf = Flow Length (ft)
P = 2 yr, 24 hr Rainfall (inches)
Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation

V = 16.1345 * (Sf^0.5) (unpaved surface)

V = 20.3282 * (Sf^0.5) (paved surface) V = 15.0 * (Sf^0.5) (grassed waterway surface) V = 10.0 * (Sf^0.5) (nearly bare & untilled surface) V = 9.0 * (Sf^0.5) (cultivated straight rows surface) V = 7.0 * (Sf^0.5) (short grass pasture surface) V = 5.0 * (Sf^0.5) (woodland surface) V = 2.5 * (Sf^0.5) (forest w/heavy litter surface) Tc = (Lf / V) / (3600 sec/hr)

Where:

Tc = Time of Concentration (hrs)
Lf = Flow Length (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)

Channel Flow Equation

V = (1.49 * (R^(2/3)) * (Sf^0.5)) / n R = Aq / Wp Tc = (Lf / V) / (3600 sec/hr)

Where:

Tc = Time of Concentration (hrs)
Lf = Flow Length (ft)
R = Hydraulic Radius (ft)
Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)
n = Manning's Roughness

Subbasin P.1

Sheet Flow Computations

Manning's	Roughness:
-----------	------------

Subarea A	
0.01	

Subarea B 0.00 Subarea C 0.00

Flow Length (ft):	66.00	0.00	0.00
Slope (%):	1.00	0.00	0.00
2 yr, 24 hr Rainfall (in):	2.40	2.40	2.40
Velocity (ft/sec):	0.73	0.00	0.00
Computed Flow Time (minutes):	1.51	0.00	0.00
Total TOC (minutes):	1.51		

Subbasin P.2

Sheet Flow Computations

	Subarea A	Subarea B	Subarea C
Manning's Roughness:	0.01	0.00	0.00
Flow Length (ft):	37.80	0.00	0.00
Slope (%):	1.00	0.00	0.00
2 yr, 24 hr Rainfall (in):	2.40	2.40	2.40
Velocity (ft/sec):	0.65	0.00	0.00
Computed Flow Time (minutes):	0.97	0.00	0.00
Total TOC (minutes):	0.97		

Subbasin P.3

Sheet Flow Computations

	Subarea A	Subarea B	Subarea C
Manning's Roughness:	0.01	0.00	0.00
Flow Length (ft):	27.70	0.00	0.00
Slope (%):	0.70	0.00	0.00
2 yr, 24 hr Rainfall (in):	2.40	2.40	2.40
Velocity (ft/sec):	0.53	0.00	0.00
Computed Flow Time (minutes):	0.87	0.00	0.00

Channel Flow Computations

	Subarea A	Subarea B	Subarea C
Manning's Roughness:	0.01	0.00	0.00
Flow Length (ft):	128.00	0.00	0.00
Channel Slope (%):	0.65	0.00	0.00
Cross Section Area (ft²):	0.20	0.00	0.00
Wetted Perimeter (ft):	3.00	0.00	0.00
Velocity (ft/sec):	1.49	0.00	0.00
Computed Flow Time (minutes):	1.43	0.00	0.00
Total TOC (minutes):	2.30		

Subbasin ID	Accumulated Precip in	Rainfall Intensity in/hr	Total Runoff in	Peak Runoff cfs	Weighted Runoff Coeff	Conc days	Time of entration hh:mm:ss
P.1	0.37	4.38	0.26	1.13	0.700	0	00:05:00
P.2	0.37	4.38	0.26	0.12	0.700	0	00:05:00
P.3	0.37	4.38	0.26	0.21	0.700	0	00:05:00

Node Depth Summary ********

Nodo	 Avonago		Maximum	 Timo		 Total	Total	
Noue	Average	Maximum	Maximum	1 Time	OT Max	TOLAT	TOLAT	Recention
ID	Depth	Depth	HGL	Occu	irrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
J1	0.03	0.24	650.59		00:05	0	0	0:00:00
J2	0.01	0.07	650.42	0	00:05	0	0	0:00:00

J3	0.04	0.38	647.52	0	00:05	0	0	0:00:00
J4	4.04	4.37	646.87	0	00:05	0	0	0:00:00
35	0.02	0.16	646.96	0	00:05	0	0	0:00:00
J6	0.02	0.16	646.82	0	00:05	0	0	0:00:00
J7	0.06	0.49	642.93	0	00:05	0	0	0:00:00
Ј8	0.06	0.48	642.58	0	00:05	0	0	0:00:00
39	0.03	0.29	651.20	0	00:05	0	0	0:00:00
POCA	0.03	0.29	650.92	0	00:05	0	0	0:00:00

Node Flow Summary ********

Node ID	Element Type	Maximum Lateral Inflow	Peak Inflow	Time of Peak Inflow Occurrence		Maximum Flooding Overflow	Time of Peak Flooding Occurrence
		cfs	cfs	days	hh:mm	cfs	days hh:mm
J1	JUNCTION	1.13	1.13		00:05	0.00	
J2	JUNCTION	0.12	0.12	0	00:05	0.00	
]3	JUNCTION	0.00	1.25	0	00:05	0.00	
]4	JUNCTION	0.00	1.45	0	00:05	0.00	
]5	JUNCTION	0.21	0.21	0	00:05	0.00	
J6	JUNCTION	0.00	0.21	0	00:05	0.00	
]7	JUNCTION	0.00	1.45	0	00:05	0.00	
38	JUNCTION	0.00	1.44	0	00:05	0.00	
]9	JUNCTION	0.00	1.44	0	00:05	0.00	
POCA	OUTFALL	0.00	1.44	0	00:05	0.00	

Outfall Loading Summary ***********

Outfall Node ID	Flow	Average	Peak
	Frequency	Flow	Inflow
	(%)	cfs	cfs
РОСА	22.47	0.54	1.44

System	22.47	0.54	1.44

Link Flow Summary *******

Link ID Reported	Element	Tim	e of	Maximum	Length	Peak Flow	Design	Ratio of	Ratio of	Total
	Туре	Peak	Flow	Velocity	Factor	during	Flow	Maximum	Maximum	Time
Condition	-			-		_				
		Occurrence		Attained		Analysis	Capacity	/Design	Flow	Surcharged
		days h	h:mm	ft/sec		cfs	cfs	Flow	Depth	minutes
L6	CONDUIT	0 0	0:05	3.78	1.00	1.45	2.99	0.48	0.49	0
Calculated										
L7	CONDUIT	0 0	0:05	3.88	1.00	1.44	3.08	0.47	0.48	0
Calculated										
L9	CONDUIT	0 0	0:05	7.75	1.00	1.44	8.07	0.18	0.29	0
Calculated										
Link-01	CONDUIT	0 0	0:05	8.16	1.00	1.13	9.06	0.12	0.24	0
Calculated	CONDUTT	0.0	0.05	4 05	1 00	0.10	12 00	0.01	0.07	0
L1NK-02	CONDULT	0 0	0:05	4.95	1.00	0.12	12.09	0.01	0.07	0
Link_03		0 0	0.05	3 63	1 00	1 24	9.07	0 14	0 25	0
Calculated	CONDOLL	0 0	0.05	5.05	1.00	1.24	9.07	0.14	0.25	0
link-04	CONDUTT	0 0	0:05	2.26	1.00	0.21	9,29	0.02	0.11	0
Calculated	0110021	0 0	0.05	2.20	2.00	0.111	5125	0.02	0.11	0
Link-05	CONDUIT	0 0	0:05	6.48	1.00	0.21	45.44	0.00	0.05	0
Calculated										
L8	PUMP	0 0	0:05							

All links are stable.

Analysis began on: Sat Oct 22 15:47:14 2022 Analysis ended on: Sat Oct 22 15:47:15 2022 Total elapsed time: 00:00:01

APPENDIX D REFERENCE DRAWINGS